矩阵蓄电池NP100-12 12V100AH机房储能
产品特征:
1.维护简单
充电时电池内部产生的气体基本被吸收还原成电解液、基本没有电解液减少
2.持液性高
电解液吸收地特殊的隔板中,保持不流动状态,倒下也可使用。(倒下超过90度以上不能使用)
3.安全性能优越
由于极端过充电操作失误引起过多的气体时可以放出,防止电池的破裂。
4.自放电极小
用特殊铅钙合金生产板栅,把自放电控制在小。
5.寿命长、经济性好
电池的板栅采用耐腐蚀好的特种铅钙合金,采用特殊隔板能保住电解液,再用强力压紧正板活性物质,防止脱落,是一
种寿命长、经济的电池。
6.内阻小
由于内阻小,大电流放电特性好。
7.深放电后有优越的恢复能力
万一出现长期放电,只要充分充电,基本不出现容量降低,很快可以恢复。
大功率的UPS电源一般都是双转换在线式的。这两个变换器(整流器和逆变器)是串联结构,一旦一个出现故障,市电正常也不能将电送到负载。为此,这种UPS都配有静态旁路开关,连接到旁路交流电源。一旦出现以上的情况,静态开关导通,将旁路交流电源送给负载,保证负载的连续运行。为了保证这种切换过程是无间断的,也就是需要在一段时间内实现两路电源(逆变器的输出和旁路交流电源的输出)的重叠供电。两路电源给一个负载供电期间,他们之间必然会有环流,这种环流是非常可怕的,可以造成两路电源中的一路过载。为了控制这个环流,逆变器的输出电压正常运行时是与旁路交流电源同步和锁相的,这样就会出现逆变器的输出电压的频率是随旁路交流电源的频率变化的。这就是UPS的频率漂移。当然这种频率变化只能在负载能够允许的范围内,一旦旁路交流电源的频率超出了负载能够接受的范围,逆变器的输出就不会再与旁路交流电源同步和锁相了,这时的逆变器输出电压是有内部晶振来控制的。但晶振的温度特性比较敏感,造成逆变器的输出频率也会出现一些细微的漂移,但这个漂移通常负载都能够接受。
只要是铅蓄电池,在使用的过程中都会硫化,但其它领域的铅酸电池却比电动自行车上使用的铅酸电池有着更长的寿命,这是因为电动自行车的铅酸电池有着一个更容易硫化的工作环境。
①深度放电
用在汽车上的铅蓄电池只是在点火时单向放电,点火后发电机会对电池自动充电,不造成电池深度放电。而电动自行车在骑行时不可能充电,经常会超过60%的深度放电,深放电时,硫酸铅浓度增加,硫化就会相当严重。
②大电流放电
电动车20公里巡航电流一般是4A,这个值已经高于其它领域的电池工作电流,而超速超载的电动车的工作电流就更大。电池制造商都进行过1C充电70%,2C放电60%的循环寿命试验。经过这样的寿命试验,可达到充放电循环350次寿命的电池很多,实际在用的效果就相差甚远了。这是因为大电流工作增加了50%的放电深度,电池会加速硫化。电动摩托车的电池寿命更短,因为电动摩托车的车身太重,电机功率大,在巡航时工作电流达8A以上。有的甚到达到10A.
③充放电频率高
用在后备供电领域的电池,只有在停电时才会放电,如果一年停8次电,要达到10年的寿命,只用做到80次循环充电寿命,而电动车一年充放电循环300次以上很常见。甚到有的人可能充好几次,充的时间很短,没有充饱就使用了。
针对大功率UPS电源运行特点,我们提出几点建议,希望帮助用户提高大功率在线式UPS电源运行的可靠性。
1、大功率UPS输入电源宜采取双回路双开关控制的供电模式,以提高系统供电工作可靠性。
2、UPS集中供电模式的可靠性较低。对于比较重要的数据中心,用户可采取直接从UPS配电柜单独拉专线的供电方式,以提高供电可靠性。但若想改造,更改线路很麻烦,可考虑在重要用户的设备前端串接小功率在线式UPS电源(5kVA以下)。
3、如果希望系统更可靠稳定,数据中心得到更好的保障,则不宜采取UPS集中供电模式,而宜采取分散供电模式。
4、对于功率小于5kVA的小功率UPS,可串接在大型UPS后使用。对于使用晶闸管作为整流器件的的UPS,不宜串接其后。
以上就是关于如何提高大功率UPS电源应用的可靠性几个关键要点,希望能够帮助到大功率UPS电源用户。④短时充电
由于电动自行车是交通工具,可充电的时间不多,要在8小时内完成36伏或48伏的20安时充电,这就必须提高充电电压(一般为单节2.7~2.9伏),当充电电压超过单节电池的析氧电压(2.35伏)或析氢电压(2.42伏)时,电池就会因过度析氧而开阀排气,造成失水,使电解液浓度增加,电池的硫化现象加重。
⑤放电后不能及时充电
作为交通工具,电动自行车的充电及放电被完全分离开来,放电后很难有条件及时充电,而放电后形成的大量硫酸铅如果超过半小时不充电还原为氧化铅,就会硫化结晶。
第四个原因:电动自行车生产方面的原因
大多数车的控制器都留了一个限速插头,一些车厂干脆就去掉限速器出厂,既可以吸引看重车速的客户,也能降低成本,这样的车在高速行驶时电流非常大,会严重缩短电池寿命。
12V铅酸电池的低保护电压为10.5V,如果是36V电池组,低保留电压就是31.5V,目前大多数车厂采用的控制器欠压保护电压也都是31.5V。表面上看这是正确的,实际当36V电池组只剩下31.5V电压时,由于电池存在容量差,肯定就会有一个电池电压低于10.5V,该电池就处于过放电状态。这时候,过放电的电池容量急剧下降,这时对电池的损伤影响不仅仅是该单只电池,而是影响整组电池的寿命。其实,在电池电压低于32V以后一直到27V,所增加的续行能力不到2公里,而对电池的损伤却非常大。只要出现这样的情况10次,电池的容量就会低于标称容量的70%。一些用户发现电池在欠压以后,过10分钟,电池又不欠压了,就又采取给电行驶,这对电池破坏更大,而大多数车的说明书没有给用户以警示。目前多数控制器内部都有可调的电位器,而这个可调的电位器的振动漂移是比较严重的。在价格竞争中,面对更注重车外表的用户群,很少有产品采用抗振动的精密多圈电位器,这样的控制器发生振动后漂移也不奇怪。
阀控式密封铅酸电池(以下简称阀控式电池)由于具有节省投资、安装简便、安全可靠、使用方便等特性,在实际应用中被大量使用。但由于对其使用要求缺乏了解,并沿用旧的均衡充电制度,对电池造成较大的危害。
后备式UPS的本质特点就是具有离线的逆变器,并且由于逆变器平时为冷备状态,存在较长的电池切换时间。当市电输入良好时,UPS将市电直接导通到负载侧(没有在线调压装置)。只有当市电输入失败或供电质量超出UPS正常输入范围时,才启动逆变器并切换到电池放电状态。该类UPS输入范围窄,容量小(400W~1000W之间),在线及逆变输出质量差,且切换时间较长,长延时应用能力较差,综合的可用性较差,只适用于单台PC等非重要场合的一般性电源保护,但结构简单体积小噪音低,普遍具有较高的工作效率,以及经济的价格。
普通交互在线式:(LineInteractive)
该类UPS同样具有离线的逆变器,但为热备状态。当UPS在线工作时,逆变器作为双向变换器起到为电池充电的作用。而电池放电状态时,可快速投入逆变工作,可以提供更快的切换时间,确保负载在切换时不受到任何影响。提供相当程度的电压调整能力以及输入输出的滤波及浪涌抑制环节。从而可以提供良好的净化输出电源,对负载起到更好的保护作用。