蓝禹蓄电池6-CNJ-100 12V100AH胶体免维护型
蓝禹蓄电池6-CNJ-100 12V100AH胶体免维护型
*免维护:采用***阴极吸收技术,整个使用过程无须任何维护(无需充水)。
*寿命长:放电到0V,10天内充电可恢复。浮充使用5-8年以上。
*更安全密封性能好,任何方向放置可使用,***使用设备不被腐蚀。
*电率低:在20℃条件下,自放电率每月小于2%。
*使用环境:在-40℃~50℃温度范围内能使用。
1.不要打破电池,电池电解液具有强烈的腐蚀性,对皮肤和衣物有腐蚀作用。
2.不要使电池短路,电池短路时,会导致机器损坏、电池发热、发生危险。
3.不要把电池投入火中,投入火中会引起电池爆炸。
4.不得捣毁电池,捣毁电池会使电池的安全结构受破坏。
5.避免电池正负极反接,正负极反接会使电池爆炸。
6.不要使电池过充电,并防止过大的电流放电。
7.不要破坏电池密封结构,电池密封结构受到破坏后,会引起电池漏液、火灾甚至爆炸。
8.不要将电池放置在密闭的容器或密闭的设备中进行充电,以免引起电池爆炸。
通常,能量储存与电池和蓄电池相关,它们为电子设备提供能量。近,在笔记本电脑、相机、智能手机或电动车中,超级电容的应用越来越多。超级电容与传统电池能快速存储大量的能量并迅速释放不同,例如,当火车进站制动时,超级电容可以储存制动产生的能量,并当火车启动需要大量能量时再提供给它。
一个技术团队和慕尼黑工业大学无机与金属有机化学系RolandFischer教授一起研发出了一款高效的超级电容。该储能器件的本质是一款新型的、强大的、可持续使用的石墨烯混合材料,并已将其与目前正被使用的电池进行了性能数据比较。
通常,能量储存与电池和蓄电池相关,它们为电子设备提供能量。近,在笔记本电脑、相机、智能手机或电动车中,超级电容的应用越来越多。
超级电容与传统电池能快速存储大量的能量并迅速释放不同,例如,当火车进站制动时,超级电容可以储存制动产生的能量,并当火车启动需要大量能量时再提供给它。
超级电容还有一个需要解决的问题就是它们缺少能量密度。当锂蓄电池的能量密度达到265千瓦时,超级电容目前为止只有其十分之一的能量密度。
可持续材料提供高性能
该团队和慕尼黑工业大学化学家RolandFischer一起为超级电容开发了一款新型的、强大的也可以持续使用的石墨烯混合材料。它可以作为储能器件的正极。研究人员将其与一种已被证实基于土卫六(titian)和碳的负极相结合。
这种新型储能器件不仅能达到73Wh/kg的能量密度(大约相当于镍氢电池的能量密度),也比大多只有16kW/kg能量密度的超级电容具有更好的性能。这款新型超级电容的奇妙之处在于结合了不同种的材料,化学家将该超级电容称为“不对称电容”。
混合材料:自然是榜样
研究人员押注于一种新的策略来克服传统材料的性能限制,即采用混合材料。Roland Fischer表示:“大自然充满了高度复杂、不断进化和优化的混合材料,骨头和牙齿就是很好的例子。它们的机械性能,如硬度和弹性,通过各种材料的自然组合得到优化。”
研究小组将组合基础材料的抽象想法转移到了超级电容上。以此为基础,他们采用经化学改良后的新型石墨烯储存单元正极,并将其与纳米结构的有机金属架构相结合,即所谓的MOF。
强大且稳定
决定石墨烯混合材料性能的因素一是大比表面积和可控孔径,另一个则为高导电性。
大表面积对于好的超级电容至关重要。它可以允许在材料中分别收集大量的电荷载体,这是电能储存的基本原理。
通过巧妙的材料设计,研究人员实现了将石墨烯酸和MOF连接起来的壮举。由此产生的混合MOF拥有一个超大内表面积,高达900平方米每克,并作为超级电容的正极具有很高性能。
长期稳定性
事实上,这不是这种新材料的唯一优势。为了实现化学稳定的化合物,需要成分蓝禹蓄电池6-CNJ-10012V100AH胶体免维护型间有很强的化学键。这些键显然和蛋白质中氨基酸之间的键相同,Fischer表示:“事实上,我们曾把石墨烯酸和MOF氨基酸连接起来,形成了一种肽键。”