从铅酸蓄电池化学反应方程式可见,正极板上市PbO2,负极板上是Pb。这两种物质的导电和物理性质都随温度变化极小,可以说,铅酸电池放电的温度效应是由于硫酸所致,因为只有它的活化(离解程度和离子迁移速度)与温度相关。
从铅酸蓄电池化学反应方程式可见,正极板上市PbO2,负极板上是Pb。这两种物质的导电和物理性质都随温度变化极小,可以说,铅酸电池放电的温度效应是由于硫酸所致,因为只有它的活化(离解程度和离子迁移速度)与温度相关。
铅蓄电池硫酸电解液的温度,容量输出就多,电解液的温度低,容量输出就少。照成这种情况的原因,除由于温度降低之外,还由于温度降低时,硫酸铅在硫酸电解液中的溶解度也将降低,这必然使极板周围的铅离子造成饱和,迫使形成的硫酸铅结晶致密,这个致密的结晶阻碍了活性物质与硫酸电解液的充分接触,从而使铅蓄电池容量输出减少。
铅蓄电池在放电时如果硫酸电解液温度较,这就会使极板表面的PbSO4在硫酸电解液中的过饱和度降低,而有利于形成疏松的硫酸铅结晶,使之在充电时生产粗大坚固的PbO2层,从而可延长极板活性物质的使用寿命。铅蓄电池在充电时如果电解液的温度过,则会使电解液的扩散加快,极板板栅的腐蚀加剧,从而也就使铅蓄电池的使用寿命缩短。
实践表明:
(1)铅蓄电池在充电时,随着电解液的温度升,极板和铅合金板栅腐蚀增大。
(2)铅蓄电池中,正极板铅合金板栅的腐蚀要比负极极大。
1.冬季比夏季的使用时间短。
2.特别是使用于冷冻库的蓄电池由于放电量大,而使的实际使用时间显著减短。
若欲延长使用时间,则在冬季或是进入冷冻库前,应先提其温度。
4.放电量与寿命
每日反复充放电以供使用时,则电池寿命将会因放电量的深浅,而受到影响。
5.放电量与比重
蓄电池之电解液比重几乎与放电量成比例。根据蓄电池完全放电时的比重及10%放电时的比重,即可推算出蓄电池的放电量。
测定铅蓄电池之电解液比重为得知放电量的佳方式。定期性的测定使用后的比重,以避免过度放电,测比重的亦测电解液的温度,以20℃所换算出的比重,切勿使其降到80%放电量的数值以下。
6.放电状态与内部阻抗
内部阻抗会因放电量增加而加大,尤其放电终点时,阻抗大,主因为放电的进行使得极板内产生电流的不良导体─硫酸铅及电解液比重的下降,都导致内部阻抗增强,故放电后,务必马上充电,若任其持续放电状态,则硫酸铅形成安定的白色结晶后(此即文献上所说的硫化现象),充电,极板的活性物质亦无法恢复原状,而将缩短电瓶的使用年限。
白色硫酸铅化
蓄电池放电,则阴、阳极板产生硫酸铅(PbS04),若任其持续放电,不予充电,则后会形成安定的白色硫酸铅结晶(再充电,亦难再恢复原来的活性物质)此状态称为白色硫化现象。
7.放电中的温度
当电池过度放电,内部阻抗即显著增加,蓄电池温度也会上升。放电时的温度,会提充电完成时温度,将放电终了时的温度控制在40℃以下为理想。