MATRIX蓄电池NP12-12 12V12AH规格尺寸
产品特征:
1.维护简单
充电时电池内部产生的气体基本被吸收还原成电解液、基本没有电解液减少
2.持液性高
电解液吸收地特殊的隔板中,保持不流动状态,倒下也可使用。(倒下超过90度以上不能使用)
3.安全性能优越
由于极端过充电操作失误引起过多的气体时可以放出,防止电池的破裂。
4.自放电极小
用特殊铅钙合金生产板栅,把自放电控制在小。
5.寿命长、经济性好
电池的板栅采用耐腐蚀好的特种铅钙合金,采用特殊隔板能保住电解液,再用强力压紧正板活性物质,防止脱落,是一
种寿命长、经济的电池。
6.内阻小
由于内阻小,大电流放电特性好。
7.深放电后有优越的恢复能力
万一出现长期放电,只要充分充电,基本不出现容量降低,很快可以恢复。
幻对可靠性M丁BF指标的误解
对MTBF指标的误解是,MTBF不等于设备实际可连续运行的时间,也不等于设备的生命周期。MTBF是一个概率指标,指设备可连续可靠工作的概率,MTBF是失效率入的倒数,一个年失效率A为O。1的设备,其年平均无故障时l间MTBF等于87600小时。根据年失效率,我们还可以推算出月失效率、日失效率,也就是说,一个年失效率为0?l(MTBF二87600小时)的设备,随时都可能发生故障。
使用MTBF指标肘第二个要注意的是,MTBF可用理论汁算、试验验证、故障统计3种方法得出,而在设备选用阶段,这3种方法都是没有条件实现的。一个不可测量的指标自然是不可信和不可作为衡量设备优劣依据的。
及对系统可靠性和设备故障率的错误认识
在选用模块化UPS或者对单机做门十1配置时,人们发现设备越多故障率也越高(规律是对的),得出系统可靠性必然差的结论。这种观念的错误之处在于,在当代数据中心供电系统冗余容错设计中,设备故障不等于系统故障,设备故障率也不再等于系统可靠性。用户关心的是供电系统能否确保IT设备是否能连续不中断地运行,这就是他们宁可选用设备多(故障率高)的n+l和2n系统,而不考虑设备少(故障率低)的u系统的原因。更何况模块化UPS关键的优势是系统可快速修复,这是提高系统可用性的有效的关键措施。
只要是铅蓄电池,在使用的过程中都会硫化,但其它领域的铅酸电池却比电动自行车上使用的铅酸电池有着更长的寿命,这是因为电动自行车的铅酸电池有着一个更容易硫化的工作环境。
①深度放电
用在汽车上的铅蓄电池只是在点火时单向放电,点火后发电机会对电池自动充电,不造成电池深度放电。而电动自行车在骑行时不可能充电,经常会超过60%的深度放电,深放电时,硫酸铅浓度增加,硫化就会相当严重。
②大电流放电
电动车20公里巡航电流一般是4A,这个值已经高于其它领域的电池工作电流,而超速超载的电动车的工作电流就更大。电池制造商都进行过1C充电70%,2C放电60%的循环寿命试验。经过这样的寿命试验,可达到充放电循环350次寿命的电池很多,实际在用的效果就相差甚远了。这是因为大电流工作增加了50%的放电深度,电池会加速硫化。电动摩托车的电池寿命更短,因为电动摩托车的车身太重,电机功率大,在巡航时工作电流达8A以上。有的甚到达到10A.
③充放电频率高
用在后备供电领域的电池,只有在停电时才会放电,如果一年停8次电,要达到10年的寿命,只用做到80次循环充电寿命,而电动车一年充放电循环300次以上很常见。甚到有的人可能充好几次,充的时间很短,没有充饱就使用了。
④短时充电
由于电动自行车是交通工具,可充电的时间不多,要在8小时内完成36伏或48伏的20安时充电,这就必须提高充电电压(一般为单节2.7~2.9伏),当充电电压超过单节电池的析氧电压(2.35伏)或析氢电压(2.42伏)时,电池就会因过度析氧而开阀排气,造成失水,使电解液浓度增加,电池的硫化现象加重。
⑤放电后不能及时充电
作为交通工具,电动自行车的充电及放电被完全分离开来,放电后很难有条件及时充电,而放电后形成的大量硫酸铅如果超过半小时不充电还原为氧化铅,就会硫化结晶。
UPS电源的过电压防护包含两重的意义:一方面,来自外部的各种浪涌或电压尖峰对UPS构成一定影响,需要进行防护;另一方面,这些浪涌或电压尖峰有可能透过UPS影响到负载,必要时也需要进行防护。
配置大型UPS电源的数据中心或控制中心,其所在建筑物或机房一般都具备比较完善的整体防雷系统,到达UPS端的过电压残值不高;而小UPS的使用环境则比较差,除了防雷,还要考虑对周边电网上的操作过电压的浪涌冲击防护。过电压防护措施的效果和成本与其器件和方案的选择有着重要的关系。选择较低动作电压和较大通流容量的SPD器件可以降低其残压,但动作电压太低会由于电源的不稳定造成SPD器件频繁动作而提前失效,通流容量较大则造成防护成本过高。
通常情况下,小容量UPS电源主要还不是考虑防雷,而是对电源操作过电压的防护。在早期的设计中,出于成本考虑,小UPS与其他普通电源产品类似,一般是在200Vac输入EMI上采用14D471的氧化锌压敏电阻(MOV)进行过电压防护。一般的14D471压敏电阻产品,其通流容量大约在6kA(8/20μs,一次)以下,这在电网稳定的地区没有问题,在电网不稳定的地区,采用14D471的压敏电阻是比较容易损坏的,这是由于操作过电压浪涌与雷电浪涌相比,幅度较低,但持续时间较长,呈周期性,这对于通流容量较小的压敏电阻来说,吸收浪涌的热量连续积累而来不及散发,是非常容易损坏的。