供电系统由两个接地系统组成,前部分有四根线,是TN一C供电系统;后部分有五根线,是TN一S供电系统。分界点在N线与PR线的连接点处,分开后就不允许再合并。这种供电系统一般用在民用建筑物的供电由区域变电所引来的场所。迸户前采用TN-C供电系统,迸户后变成了N-S供电系统。目前,新建通信及其它设施中也常见。
由于该系统PEN线上正常工作时有电流,使系统的PE线上和接于PE线上的电气设备金属外壳有对地电压存在,只是该系统PEN线多是系统干线,阻抗小,对地电压较低。这种系统接地方式不适宜作为通信枢纽供电系统及接地方式。
供电系统及接地方式通常称TT供电系统属于三相四线制供电接地系统。该系统常用于设备供电来自于公用电网的地方,民用郊区较常见。
TT供电系统的特点:中性线N与保护地线PE无电气连接,即中性点接地与PE线接地是分开的,设备的外壳与电源的接地无直接联系。即设备的外露可导电部分均与系统接地点无关,各自的接地装置单独接地。
设备外壳是地电位,不会产生火花或电弧,较为安全。但当接地发生故障时,接地电流需流过设备接地电阻Re和电源中性线接地电阻Rn,回路阻抗较大,故障电流比TN供电系统小,降低了线路保护装置的动作灵敏度。
该系统在正常运行时,不管三相负载是否平衡,在中性线N带电的情况下,PE线均不带电,如图6所示。当设备发生一相(线)绝缘损坏,将导致设备外壳上带有电压。此时如有人员触接中性点连接线或与此中性线相连的设备外壳都不安全,并且其余两相对地电位也将上升超过300V,这种供电系统必须特别注意合理配置高灵敏度的过流保护装置。
当相线与外壳相碰时,因为线路电阻很小,W相电压就几乎全部加在两个接地电阻电源中线点接地电阻Rn,保护接地电阻Re)上,按照接地电阻规程规定,这两个电阻都不得超过4Ω(有些地区实际上要求不超过10Ω),接地短路电流值可由下式求得
对应单相的电功率为P=Ulcosφ=220×11×0.8=1936(W)电流可以使额定电流10A的熔丝熔断(熔丝通过大于额定电流3倍以上才能迅速熔断),切断电源,IIA电流可以使额定电流4A的熔丝熔断切断电源,从而防止触电事故发生。
对于熔丝额定电流大于10A的用电设备,这个短路电流就不能便其迅速熔断,这样Rn和Re上都有110V的电压,即所有与该接地装置相连的电气设备的金属外壳,对地郡有110V电压。当人体与设备金属外壳接触时,会发生触电。这种系统可以在小功率范围使用,如不超过1kW时是可靠的。
该系统故障电流较小时可以通过加装漏电保护开关来弥补,以完善保护接地的功能。由上述可见,保护接地适用于中性点没有接地的电源供电系统中的电气设备,对于电源中性点接地的供电电网中,保护接地有局限性。为了保护电气设备,使熔断器等保护设备可靠动作,避免触电危险,+性点接地时采用保护性接零,如TN供电系统。