中国医疗大模型行业现状模式与投资策略分析报告2024-2030年

2024-12-12 07:33 111.36.8.250 1次
发布企业
北京中研智业信息咨询有限公司商铺
认证
资质核验:
已通过营业执照认证
入驻顺企:
5
主体名称:
北京中研智业信息咨询有限公司
组织机构代码:
91110105MA04EDUB3H
报价
请来电询价
所在地
北京市朝阳区北苑东路19号院4号楼27层2708(注册地址)
联系电话
010-57126768
中研智业客服
15263787971
联系人
杨静  请说明来自顺企网,优惠更多
请卖家联系我
15263787971

产品详细介绍

中国医疗大模型行业现状模式与投资策略分析报告2024-2030年
【报告编号】: 426203
【出版时间】: 2024年4月
【出版机构】: 中研智业研究院
【交付方式】: EMIL电子版或特快专递
【报告价格】:【纸质版】: 6500元 【电子版】: 6800元 【纸质+电子】: 7000元

免费售后服务一年,具体内容及订流程欢迎咨询客服人员。


——综述篇——
第1章:医疗大模型行业综述及数据来源说明
1.1 大模型产业界定
1.1.1 大模型定义
1.1.2 大模型的特征
1.1.3 大模型核心优势
1.1.4 大模型所处行业
1.2 医疗大模型行业界定
1.2.1 医疗大模型的界定
1、定义
2、特征
1.2.2 医疗大模型相关专业术语
1.2.3 医疗大模型行业监管
1.3 医疗大模型产业画像
1.3.1 医疗大模型产业链结构梳理
1.3.2 医疗大模型产业链生态全景图谱
1.3.3 医疗大模型产业链区域热力图
1.4 本报告数据来源及统计标准说明
1.4.1 本报告研究范围界定
1.4.2 本报告quanwei数据来源
1.4.3 研究方法及统计标准
——现状篇——
第2章:中国医疗大模型产业发展现状及痛点
2.1 中国大模型发展现状及趋势分析
2.1.1 中国大模型发展历程
2.1.2 中国已发布大模型数量变化
2.1.3 中国大模型参数规模变化
2.1.4 中国大模型商业模式分析
2.1.5 中国大模型发展趋势洞悉
2.2 中国大模型落地医疗可行性分析
2.3 中国医疗大模型技术选型与部署方式
2.3.1 中国医疗大模型技术选型
2.3.2 中国医疗大模型部署方式
2.4 中国医疗大模型开发与应用模式
2.4.1 提示工程
2.4.2 各种指令/任务微调
2.4.3 继续训练通用大模型
2.4.4 从头开始预训练
2.5 中国医疗大模型产品汇总
2.6 中国医疗大模型招投标情况
2.6.1 医疗大模型招投标统计
2.6.2 医疗大模型招投标分析
2.7 中国医疗大模型竞争要素及竞争格局
2.7.1 医疗大模型竞争要素
2.7.2 医疗大模型竞争格局
2.7.3 主要医疗大模型厂商竞争力评价
2.8 中国医疗大模型市场规模体量
2.9 中国医疗大模型发展痛点
第3章:中国医疗大模型技术架构及能力构建
3.1 完整大模型开发步骤
3.2 大模型基础架构及工程化
3.2.1 大模型基础架构
1、Transformer架构
2、大规模语言模型:BERT和GPT
3、卷积神经网络CNN
4、循环神经网络RNN
5、前馈神经网络MLP
3.2.2 大模型工程化
1、数据工程(数据处理和回流)
2、模型调优(模型训练与微调)
3、模型交付(模型压缩与测试)
4、服务运营(服务部署与托管)
5、平台支撑能力
3.3 基础大模型底座
3.3.1 NLP大模型
3.3.2 CV大模型
3.3.3 多模态大模型
3.3.4 科学大模型
3.4 医疗大模型构建路线图
3.4.1 行业需求分析与资源评估
1、业务需求评估
2、算力层评估
3、算法层评估
4、数据层评估
5、工程层评估
3.4.2 行业数据与大模型共建
1、明确场景目标
2、模型选择
3、训练环境搭建
4、数据处理
5、模型训练共建
3.4.3 行业大模型精调与优化部署
1、模型精调
2、模型评估
3、模型重训优化
4、模型联调部署
5、模型应用运营
3.5 医疗大模型基础能力构建概述
3.6 医疗大模型基础能力构建之“算力”
3.6.1 大模型的算力需求分析
3.6.2 AI芯片
1、AI芯片概述
2、AI芯片发展现状
3、AI芯片供应商格局
4、主要AI芯片类型
(1)CPU
(2)GPU
(3)DPU
(4)TPU
(5)FPGA
(6)ASIC
3.6.3 AI服务器
1、AI服务器概述
2、AI服务器发展现状
3、AI服务器供应商格局
3.6.4 医疗大模型算力部署路径
3.7 医疗大模型基础能力构建之“数据”
3.7.1 数据处理与服务概述
3.7.2 国内外主要大语言模型数据集
3.7.3 数据API
3.7.4 训练数据开发
3.7.5 推理数据开发
3.7.6 数据维护
3.7.7 医疗大模型对数据的需求
3.8 医疗大模型基础能力构建之“AI基础软件”
3.8.1 AI基础软件概述
3.8.2 AI基础软件市场概况
3.8.3 AI基础软件竞争格局
3.8.4 AI基础软件主要类型
1、机器学习框架和库
2、模型训练和部署平台
(1)模型训练平台
(2)模型部署平台
(3)模型推理平台
3、数据处理和分析工具
4、优化和自动化工具
3.9 医疗大模型标准化
3.9.1 大模型标准体系发展
1、大模型标准体系1.0
2、可信AI大模型标准体系2.0
3.9.2 行业大模型标准体系
3.9.3 医疗大模型标准及解读
1、医疗健康行业大模型系列标准框架
2、医疗大模型标准解读
第4章:中国医疗大模型应用场景分析
4.1 医疗大模型行业应用场景分布
4.2 医疗大模型应用场景:医学影像和图像
4.2.1 医学影像和图像概述
4.2.2 医学影像和图像领域大模型应用优势分析
4.2.3 医学影像和图像领域大模型应用案例分析
4.3 医疗大模型应用场景:医疗问答和智能问诊
4.3.1 医疗问答和智能问诊概述
4.3.2 医疗问答和智能问诊领域大模型应用优势分析
4.3.3 医疗问答和智能问诊领域大模型应用案例分析
4.4 医疗大模型应用场景:辅助诊疗和临床决策
4.4.1 辅助诊疗和临床决策概述
4.4.2 辅助诊疗和临床决策领域大模型应用优势分析
4.4.3 辅助诊疗和临床决策领域大模型应用案例分析
4.5 医疗大模型应用场景:医疗记录和行政管理
4.5.1 医疗记录和行政管理概述
4.5.2 医疗记录和行政管理领域大模型应用优势分析
4.5.3 医疗记录和行政管理领域大模型应用案例分析
4.6 医疗大模型应用场景:个人健康管理
4.6.1 个人健康管理概述
4.6.2 个人健康管理领域大模型应用优势分析
4.6.3 个人健康管理领域大模型应用案例分析
4.7 医疗大模型应用场景:其他
4.7.1 生命科学研究
4.7.2 药械研发
4.7.3 医疗保险
4.8 医疗大模型应用场景战略地位分析
第5章:中国医疗大模型应用实践分析
5.1 中国医疗大模型应用实践汇总
5.2 医疗大模型应用案例分析
5.2.1 北京友谊医院大模型应用布局
1、医院概况
2、医疗大模型落地实践
3、医疗大模型Zui新布局动态
5.2.2 郑州大学第一附属医院大模型应用布局
1、医院概况
2、医疗大模型落地实践
3、医疗大模型Zui新布局动态
5.2.3 浙江省人民医院大模型应用布局
1、医院概况
2、医疗大模型落地实践
3、医疗大模型Zui新布局动态
5.2.4 上海仁济医院大模型应用布局
1、医院概况
2、医疗大模型落地实践
3、医疗大模型Zui新布局动态
5.2.5 复旦大学附属中山医院大模型应用布局
1、医院概况
2、医疗大模型落地实践
3、医疗大模型Zui新布局动态
5.3 医疗大模型应用难点及应对
5.3.1 大模型“幻觉”问题
5.3.2 数据质量与成本问题
5.3.3 隐私保护和数据安全
5.3.4 伦理道德问题
第6章:中国医疗大模型企业案例解析
6.1 中国医疗大模型企业梳理与对比
6.2 中国医疗大模型产业企业案例分析(不分先后,可指定)
6.2.1 医联-MedGPT
1、基本信息
2、模型特点
3、技术架构
4、模型功能
5、应用场景
6、下游客户
7、Zui新进展
6.2.2 叮当健康-叮当HealthGPT
1、基本信息
2、模型特点
3、技术架构
4、模型功能
5、应用场景
6、下游客户
7、Zui新进展
6.2.3 医渡科技-医疗大模型
1、基本信息
2、模型特点
3、技术架构
4、模型功能
5、应用场景
6、下游客户
7、Zui新进展
6.2.4 智云健康-ClouD GPT
1、基本信息
2、模型特点
3、技术架构
4、模型功能
5、应用场景
6、下游客户
7、Zui新进展
6.2.5 华为-盘古医疗大模型
1、基本信息
2、模型特点
3、技术架构
4、模型功能
5、应用场景
6、下游客户
7、Zui新进展
6.2.6 东软-添翼医疗大模型
1、基本信息
2、模型特点
3、技术架构
4、模型功能
5、应用场景
6、下游客户
7、Zui新进展
6.2.7 科大讯飞-星火认知大模型
1、基本信息
2、模型特点
3、技术架构
4、模型功能
5、应用场景
6、下游客户
7、Zui新进展
6.2.8 百度-灵医大模型
1、基本信息
2、模型特点
3、技术架构
4、模型功能
5、应用场景
6、下游客户
7、Zui新进展
6.2.9 创业慧康-BsoftGPT
1、基本信息
2、模型特点
3、技术架构
4、模型功能
5、应用场景
6、下游客户
7、Zui新进展
6.2.10 商汤科技-医疗大模型
1、基本信息
2、模型特点
3、技术架构
4、模型功能
5、应用场景
6、下游客户
7、Zui新进展
——展望篇——
第7章:中国医疗大模型产业政策环境洞察&发展潜力
7.1 医疗大模型产业政策环境洞悉
7.1.1 国家层面医疗大模型产业政策汇总
7.1.2 国家层面医疗大模型产业发展规划
7.1.3 国家重点政策/规划对医疗大模型产业的影响
7.2 医疗大模型产业PEST分析图
7.3 医疗大模型产业SWOT分析
7.4 医疗大模型产业发展潜力评估
7.5 医疗大模型产业未来关键增长点
7.6 医疗大模型产业发展前景预测(未来5年预测)
7.7 医疗大模型产业发展趋势洞悉
7.7.1 整体发展趋势
7.7.2 监管规范趋势
7.7.3 技术创新趋势
7.7.4 细分市场趋势
7.7.5 市场竞争趋势
第8章:中国医疗大模型产业投资战略规划策略及建议
8.1 医疗大模型产业投资风险预警
8.1.1 风险预警
8.1.2 风险应对
8.2 医疗大模型产业投资机会分析
8.2.1 医疗大模型产业链薄弱环节投资机会
8.2.2 医疗大模型产业细分领域投资机会
8.2.3 医疗大模型产业区域市场投资机会
8.2.4 医疗大模型产业空白点投资机会
8.3 医疗大模型产业投资价值评估
8.4 医疗大模型产业投资策略建议
8.5 医疗大模型产业可持续发展建议
图表目录
图表1:大模型的特征
图表2:本报告研究领域所处行业
图表3:医疗大模型的定义
图表4:医疗大模型的特征
图表5:医疗大模型专业术语
图表6:医疗大模型行业监管
图表7:医疗大模型产业链结构梳理
图表8:医疗大模型产业链生态全景图谱
图表9:医疗大模型产业链区域热力图
图表10:本报告研究范围界定
图表11:本报告quanwei数据来源
图表12:本报告研究方法及统计标准
图表13:中国大模型发展历程
图表14:中国已发布大模型数量变化
图表15:中国大模型参数规模变化
图表16:中国大模型商业模式分析
图表17:中国大模型发展趋势洞悉
图表18:中国大模型落地医疗可行性分析
图表19:中国医疗大模型行业招投标分析
图表20:中国医疗大模型市场竞争格局
图表21:中国主要医疗大模型厂商竞争力评价
图表22:中国医疗大模型市场规模体量
图表23:中国医疗大模型发展痛点
图表24:大模型技术路线及算法架构
图表25:大模型工程化
图表26:数据工程(数据处理和回流)
图表27:模型调优(模型训练与微调)
图表28:模型交付(模型压缩与测试)
图表29:服务运营(服务部署与托管)
图表30:平台支撑能力
图表31:NLP大模型
图表32:CV大模型
图表33:多模态大模型
图表34:科学大模型
图表35:医疗大模型构建路线图
图表36:医疗大模型基础能力构建
图表37:医疗大模型基础能力构建之“算力”
图表38:大模型的算力需求分析
图表39:AI芯片市场分析
图表40:AI服务器市场分析
图表41:大模型基础能力构建之“数据”
图表42:数据处理与服务概述
图表43:国内外主要大语言模型数据集
图表44:大模型基础能力构建之“AI基础软件”
图表45:AI基础软件产业链
图表46:AI基础软件市场概况
图表47:AI基础软件竞争格局
图表48:大模型开发平台
图表49:医疗大模型标准解读
图表50:医疗大模型行业应用场景分布
图表51:医学影像和图像概述
图表52:医学影像和图像领域大模型应用优势分析
图表53:医学影像和图像领域大模型应用案例分析
图表54:医疗问答和智能问诊概述
图表55:医疗问答和智能问诊领域大模型应用优势分析
图表56:医疗问答和智能问诊领域大模型应用案例分析
图表57:辅助诊疗和临床决策概述
图表58:辅助诊疗和临床决策领域大模型应用优势分析
图表59:辅助诊疗和临床决策领域大模型应用案例分析
图表60:医疗记录和行政管理概述
图表61:医疗记录和行政管理领域大模型应用优势分析
图表62:医疗记录和行政管理领域大模型应用案例分析
图表63:个人健康管理概述
图表64:个人健康管理领域大模型应用优势分析
图表65:个人健康管理领域大模型应用案例分析
图表66:医疗大模型应用场景战略地位分析
图表67:中国医疗大模型应用实践汇总
图表68:友谊医院大模型应用布局
图表69:郑州大学第一附属医院大模型应用布局
图表70:浙江省人民医院大模型应用布局
图表71:上海仁济医院大模型应用布局
图表72:复旦大学附属中山医院大模型应用布局
图表73:中国医疗大模型企业案例解析
图表74:中国医疗大模型企业梳理与对比
图表75:中国医疗大模型产业企业案例分析说明
图表76:医联-MedGPT基本信息
图表77:医联-MedGPT模型特点
图表78:医联-MedGPT技术架构
图表79:医联-MedGPT应用场景
图表80:医联-MedGPT特点
图表81:医联-MedGPTZui新进展
图表82:叮当健康-叮当HealthGPT基本信息
图表83:叮当健康-叮当HealthGPT模型特点
图表84:叮当健康-叮当HealthGPT技术架构
图表85:叮当健康-叮当HealthGPT应用场景
图表86:叮当健康-叮当HealthGPT下游客户
图表87:叮当健康-叮当HealthGPTZui新进展
图表88:医渡科技-医疗大模型基本信息
图表89:医渡科技-医疗大模型特点
图表90:医渡科技-医疗大模型技术架构
图表91:医渡科技-医疗大模型应用场景
图表92:医渡科技-医疗大模型下游客户
图表93:医渡科技-医疗大模型Zui新进展
图表94:智云健康-ClouD GPT基本信息
图表95:智云健康-ClouD GPT模型特点
图表96:智云健康-ClouD GPT技术架构
图表97:智云健康-ClouD GPT应用场景
图表98:智云健康-ClouD GPT下游客户
图表99:智云健康-ClouD GPTZui新进展
图表100:华为-盘古医疗大模型基本信息
图表101:华为-盘古医疗大模型特点
图表102:华为-盘古医疗大模型技术架构
图表103:华为-盘古医疗大模型应用场景
图表104:华为-盘古医疗大模型下游客户
图表105:华为-盘古医疗大模型Zui新进展
图表106:东软-添翼医疗大模型基本信息
图表107:东软-添翼医疗大模型特点
图表108:东软-添翼医疗大模型技术架构
图表109:东软-添翼医疗大模型应用场景
图表110:东软-添翼医疗大模型下游客户
图表111:东软-添翼医疗大模型Zui新进展
图表112:科大讯飞-星火认知大模型基本信息
图表113:科大讯飞-星火认知大模型特点
图表114:科大讯飞-星火认知大模型技术架构
图表115:科大讯飞-星火认知大模型应用场景
图表116:科大讯飞-星火认知大模型下游客户
图表117:科大讯飞-星火认知大模型Zui新进展
图表118:百度-灵医大模型基本信息
图表119:百度-灵医大模型特点
图表120:百度-灵医大模型技术架构



所属分类:中国商务服务网 / 其他商务服务
中国医疗大模型行业现状模式与投资策略分析报告2024-2030年的文档下载: PDF DOC TXT
关于北京中研智业信息咨询有限公司商铺首页 | 更多产品 | 联系方式 | 黄页介绍
成立日期2019年04月02日
法定代表人王华
注册资本200万人民币
主营产品市场分析报告 可行性研究报告 商业计划书
经营范围经济贸易咨询;企业管理咨询;教育咨询;技术推广服务;企业策划;市场调查;组织文化艺术交流活动(不含演出);承办展览展示活动;设计、制作、代理、发布广告;会议及展览服务;工程和技术研究与试验发展;农业科学研究与试验发展;自然科学研究与试验发展;医学研究(不含诊疗活动);电脑图文设计、制作;销售日用品、工艺品、文具用品、家用电器、电子产品、化工产品(不含危险化学品)、机械设备。(市场主体依法自主选择经营项目,开展经营活动;依法须经批准的项目,经相关部门批准后依批准的内容开展经营活动;不得从事国家和本市产业政策禁止和限制类项目的经营活动。)
公司简介中研智业研究网于2011年成立于北京,是由“北京中研智业信息咨询有限公司”推广并运营的一家研究机构,提供针对企业用户的各类信息,如深度研究报告、市场调查、统计数据等;通过严谨的调查和科学的逻辑化的分析论证方法,中研智业已与国内多家证券公司、PE、VC机构、律师事务所、会计师事务所,以及10多个省市地区金融办、上市办结成战略合作伙伴。 ...
公司新闻
顺企网 | 公司 | 黄页 | 产品 | 采购 | 资讯 | 免费注册 轻松建站
免责声明:本站信息由北京中研智业信息咨询有限公司自行发布,交易请核实资质,谨防诈骗,如有侵权请联系我们   法律声明  联系顺企网
© 11467.com 顺企网 版权所有
ICP备案: 粤B2-20160116 / 粤ICP备12079258号 / 粤公网安备 44030702000007号 / 互联网药品信息许可证:(粤)—经营性—2023—0112